Zoeppritz-based AVO inversion using an improved Markov chain Monte Carlo method
نویسندگان
چکیده
منابع مشابه
Zoeppritz-based AVO inversion using an improved Markov chain Monte Carlo method
The conventional Markov chain Monte Carlo (MCMC) method is limited to the selected shape and size of proposal distribution and is not easy to start when the initial proposal distribution is far away from the target distribution. To overcome these drawbacks of the conventional MCMC method, two useful improvements in MCMC method, adaptive Metropolis (AM) algorithm and delayed rejection (DR) algor...
متن کاملA Markov-Chain-Monte-Carlo-Based Method for System Identification
This paper describes a novel methodology for the identification of mechanical systems and structures from vibration response measurements. It combines prior information, observational data and predictive finite element models to produce configurations and system parameter values that are most consistent with the available data and model. Bayesian inference and a Metropolis simulation algorithm ...
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملMarkov Chain Monte Carlo
This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with the basic theory of Markov chains and build up to a theorem that characterizes convergent chains. We then discuss the MetropolisHastings algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Petroleum Science
سال: 2016
ISSN: 1672-5107,1995-8226
DOI: 10.1007/s12182-016-0131-4